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Lubrication theory and similarity methods are used to determine the spreading rate 
of a localized monolayer of insoluble surfactant on the surface of a thin viscous film, 
in the limit of weak capillarity and weak surface diffusion. If the total mass of 
surfactant increases as ta, then at  early times, when spreading is driven 
predominantly by Marangoni forces, a planar (axisymmetric) region of surfactant is 
shown to spread as t(1+a)/3 ( t ( l fa)14) .  A shock exists at  the leading edge of the 
monolayer ; asymptotic methods are used to show that a wavetrain due to capillary 
forces exists ahead of the shock at small times, but that after a finite time it is 
swamped by diffusive effects. For a < t (a < l) ,  the diffusive lengthscale at the shock 
grows faster than the length of the monolayer, ultimately destroying the shock; 
subsequently, spreading is driven by diffusion, and proceeds as ti. The asymptotic 
results are shown to be good approximations of numerical solutions of the governing 
partial differential equations in the appropriate limits. Additional forces are also 
considered: weak vertical gravity can also destroy the shock in finite time, while 
effects usually neglected from lubrication theory are important only early in 
spreading. Experiments have shown that the severe thinning of the film behind the 
shock can cause it to rupture : the dryout process is modelled by introducing van der 
Waals forces. 

1. Introduction 
One reason that many prematurely born infants develop respiratory distress 

syndrome (RDS) is that their lungs are not sufficiently mature to produce adequate 
quantities of pulmonary surfactant. This substance plays a vital role in reducing the 
surface tension of the liquid which lines alveoli and lung airways, and its deficiency 
can give rise to respiratory difficulties associated with airway closure, decreased lung 
compliance, pulmonary oedema and mechanical damage of the airway linings 
(Robertson 1984), often with fatal consequences. An effective technique for the 
treatment of this condition (and of adult RDS) is to deliver surfactant externally, 
either directly through an endotracheal tube, or through inhalation of surfactant in 
aerosol form (Shapiro 1989). Since the barrier between pulmonary capillaries and the 
liquid layer in alveoli is so thin, aerosol inhalation is also used as a method of rapid 
drug delivery. In order to improve our understanding of these techniques, we 
examine one element of the delivery process, the spreading of localized, insoluble 
surfactant on a thin, viscous layer of fluid. 

When a drop of surfactant comes into contact with a clean liquid substrate, the 
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large surface tension difference at its cdge, expressed by the positive value of the 
spreading coeficient - 

causes it to spread. In (1.1) urn represents the combined surface tensions of the 
drop/substrate and drop/gas boundaries and uo thc highcr surfacc tension of the 
substrate/gas boundary. Spreading is achieved through the developrncnt, ahead of 
the bulk of the drop, of a thin monomolecular layer of surfactant on the surface of 
the substrate, along which the jump in surface tension fl is accommodated (DiPietro, 
Huh & Cox 1978). The concentration of surfactant in this monolayer increases from 
zero at  its leading edge to rm (t.he critical micelle concentration) where the monolayer 
meets the bulk of the drop. The surface tension u* at  each point along the monolayer 
is related to the local surfactant concentration r* through an empirically determined 
equation of state u(r*/rm), such that u(0) = 1, ~ ( 1 )  = 0 and 

s = u0-vm, (1.1) 

u* = urn +&(r*/rm). 
The gradient in r*, and thus in u*, along the monolayer induces a shear stress a t  the 
surface of the underlying liquid, and thus a Marangoni flow in the substrate. If the 
liquid substrate is thin, and if diffusion of the surfactant on the surface of the film 
is sufficiently slow, the flow induces large deformations in the film (Borgas & 
Grotberg 1988; Gaver & Grotberg 1990; referred to respectively as BG and GG1 
hereinafter.). The leading edge of the monolayer behaves like an advancing rigid 
plate, and the abrupt transition to undisturbed conditions just ahead of the 
monolayer produces a shock-like discontinuity in film height, with the film elevated 
beneath the leading edge of the monolayer to almost twice its undisturbed height. To 
accommodate this elevation the film thins in regions closer to the centre of the drop 
(GG1). Gaver & Grotberg (1992, hereinafter referred to as GG2) observed 
experimentally that if the initial gradients in surfacc tension are sufficiently large, 
the deformation of the film induced by thc spreading of a surfactant droplet may be 
severe enough for the thinncst part of thc film to rupture, lcaving a dry ring. 

Of particular importance in the context of surfactant replacement therapy are 
estimates of spreading rates, either of a planar front of surfactant advancing along 
the mucus lining of an airway, or of a droplet of surfactant spreading over the film 
covering an alveolar wall. I n  both cases, the substrate film is thin enough for 
gravitational effects to be negligible. In most experimental measurements of 
spreading rates, however, thicker substrates were used for which gravity was 
significant. Ahmad & Hansen (1972) examined a spreading strip of surfactant, and 
observed spreading proportional to  tk;  they accounted for this with an ad hoc model 
that neglected gravitational effects (among others). GG2, who examined spreading 
drops, could not identify a universal spreading rate, but could describe their 
experimental results using a model developed using lubrication theory. In  a separate 
numerical study using this model, GGL predicted that the spreading rate of a drop 
was approximately when gravity and surface diffusivity were weak, increasing to 

when diffusion was stronger. A theoretical estimate of spreading rate was 
given by BG, who studied the steady advance of a monolayer pushed along by a 
barrier, and thereby predicted that if surfactant is supplied to the monolayer a t  a 
rate of ti, a planar front advances a t  a rate of ti. This result was not directly related 
to the time-dependent governing equations, however. 

In modelling the spreading process, much can be learned by considering the 
spreading of an insoluble surfactant monolayer on a thin film, neglecting the 
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behaviour of the bulk surfactant droplet a t  the upstream edge of the monolayer. (We 
will therefore not be considering the fingering instability at the edge of the bulk 
droplet observed experimentally by Troian, Wu & Safran (1989) and modelled by 
Troian, Herbolzheimer & Safran (1990) ; nor do we consider the effects of solubility, 
discussed by Halpern & Grotberg (1991).) Using lubrication theory, two coupled 
nonlinear evolution equations for the film thickness and the surfactant concentration 
distribution can be derived (BG, GG1, $2 ) .  BG studied such equations in a steadily 
translating frame, representing an advancing planar front, and showed how surface 
diffusion of the surfactant can smooth the shock at the leading edge of the 
monolayer. GG1 computed time-dependent solutions of these equations in an 
axisymmetric geometry, to describe the evolution of a disk-like monolayer of 
surfactant. They examined the effects of a vertical gravitational field, and showed 
how a backflow due to  hydrostatic pressure gradients may be generated by the large 
gradients in film height. 

In  this paper we consider two additional effects: the mean surface tension of the 
liquid film (which we shall refer to below as ‘capillarity’); and long-range 
intermolecular forces (van der Waals forces). Although capillarity is a weak force, i t  
has a significant qualitative effect on the structure of the shock (Espinosa 1991). It 
is also important in stabilizing the film against instabilities due to  van der Waals 
forces. TheFe forces, too, are very weak, unless the film becomes extremely thin (less 
than lOOOA), in which case they encourage depressions in the film to grow, and may 
ultimately cause the film to rupture (Ruckenstein & Jain 1974; Williams & Davis 
1982). Since film rupture has such a dramatic effect on the spreading process, i t  
interferes severely with methods of delivery of surfactant or drugs, making it of 
considerable importance to  establish the conditions under which rupture can occur. 
We will consider below a potential mechanism for the dryout seen experimentally, 
namely that the severe thinning due to Marangoni effects is sufficient to  induce a 
rupture instability. 

We begin, however, by presenting a class of similarity solutions of the reduced 
evolution equations, in which there is a balance of viscous and Marangoni forces 
alone (93). The spreading rates of these solutions depend both on the geometry of the 
problem, and on the rate a t  which surfactant is supplied to  the monolayer: an 
axisymmctric drop is predicted to spread a t  a rate of t x ;  a planar strip a t  a rate of ti; 
and a planar front at a rate of tf. These predictions correspond to results recently 
obtained by Espinosa (1991). In $ 4  these solutions are compared to numerical 
solutions of the evolution equations that are additionally subject to the effects of 
weak capillarity and weak surface diffusion of surfactant. It is confirmed that the 
spreading rates predicted by the similarity solutions are useful and accurate 
approximations, but only over certain time intervals. I n  order to quantify these 
times, the asymptotic structure of the shock is investigated in $5. The role of gravity, 
of an existing weak concentration of surfactant on the film ahead of the shock, and 
of some additional forces normally neglected in the lubrication approximation are 
also examined. We show that for a spreading drop or strip on an uncontaminated 
film, the shock will be destroyed in finite time by either gravitational or diffusive 
forces. Thereafter, the spreading rate changes : if diffusion is the dominant force, for 
example, it is shown in 56 that  the spreading rate of a drop or a strip becomes ti. 

In  $7 we investigate the conditions under which the rapid spreading of a drop of 
surfactant can induce the film to rupture. It will be demonstrated that Marangoni 
forces alone are not sufficient to  induce the film thickness to reach zero in finite time, 
but that  they deform the film sufficiently to  allow van der Waals forces to overcome 



262 0. E .  Jensen and J .  B .  Grotberg 

the stabilizing effects of capillarity (and of the surfactant monolayer itself) and give 
rise to dryout. Section 8 contains a discussion of the results. 

2. The model 
The model to be investigated here has been described in detail previously by GG1 

and so only a brief summary is given. We will consider a thin, planar film of a viscous, 
incompressible, Newtonian fluid lying on a horizontal plane and having a monolayer 
of insoluble surfactant a t  its upper surface. 

The variables of the flow are scaled as follows. Let 0 be a typical horizontal 
velocity, fi the undisturbed height of the film, L the initial horizontal length of the 
monolayer, and #/L" (see (1.1)) the scale of the surface tension gradients. Since it is 
the tangential stress boundary condition that drives Marangoni flow (see (2.11) 
below), we set ,uo/E? = s"/z, where ,u is the fluid's dynamic viscosity. By imposing the 
condition that e: = fi/z < 1, lubrication theory may be used. Thus we choose to scale 
the vertical velocity by €0, time by &/eD and the pressure by ,uDZ/fi2 = We 
suppose that the Reynolds number Re =pOz/,u is sufficiently small that the 
leading-order inertial terms in the momentum equation, of O(e2 Re), are negligible. 

The surfactant concentration in the monolayer is scaled so that r = P/rrn. We 
scale the surface tension c* of the film so that (1.2) becomes 

where Y = e2ern/s. This ensures that capillary effects due to the constant component 
of u*, Y / e 2 ,  arise at the same order as Marangoni effects due to spatial gradients of 
the component c(r), but that the two effects are uncoupled a t  leading order in e .  The 
equation of state c(r) is in general nonlinear: although a linear law will be used 
predominantly below, this model allows the use of a nonlinear relation, such as one 
related to that used by GG1, 

a(T) = (P+ 1) [1 +W) m3-/3, (2.2) 

/3 relates to the 'activity' of the surfactant, i.e. to the nonlinearity of (2.2), as shown 
in figure 8 ( b )  below; unlike GG1, we allow Y to be independent of /3. 

In  the following, all variables are non-dimensionalized by the above scalings, and 
for brevity all O(e2) quantities will be neglected. Both axisymmetric and planar 
distributions of surfactant will be of interest in later sections, and so we use a 
notation that accommodates both geometries. Taking coordinates (x, z ) ,  with z 
vertical, we allow x to represent either a horizontal or radial coordinate. The 
corresponding velocity field is (u(x, z ,  t ) ,  w(x ,  z ,  t ) ) .  The film surface is at z = h ( z ,  t ) .  We 
define 2,h = h, in a planar geometry, and a X h  = x-l(xh), in an axisymmetric 
geometry. 

The equations of mass and momentum conservation for the film are 
- 

= 0, (2.4) 
0 = -PX-# ,+Uaz '  (2.5) 
0 = -pz-#z-%, (2.6) 

where $ = pgH2/g is a parameter representing a gravitational force directed 
vertically downwards when % > 0, p is the pressure and # is a potential energy per 
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unit volume in the liquid representing the effects of van der Waals forces. Following 
Ruckenstein & Jain (1974),  we assume 

d 
h3 

$(x, t )  = -. 

d is related to  the Hamaker constant A by d = a / ( 6 d f i 2 ) .  Other types of 
intermolecular force will be not considered. 

The boundary conditions for the flow are as follows. A no-slip condition 

u = w = 0  (2 .8)  

is imposed a t  z = 0. Using (2 .4) ,  the kinematic boundary condition at z = h may be 
expressed as 

h,+&.([udz) = 0.  

The normal and tangential stress conditions a t  z = h are 

p ( z , z  = h - , t )  = -Y?j,(h,) (2.10) 

(assuming p = 0 above the film) and 

u, = g,. (2.11) 

r, +8,(u,r) = 9a,(r,). (2.12) 

The surfactant conservation relation is 

T(x, t )  varies through advection (us = u(z, z = h, t ) )  and surface diffusion 
(W' = ofi/d is the surface PBclet number, where b is the surface diffusivity of 
surfactant, assumed constant). 

Equations (2 .6)  and (2 .10)  show that 

p ( z , z , t )  = Y(h-z)-Ya,(h,). (2.13) 

Since p ,  and q5, are independent of z ,  (2 .5)  may be integrated straightforwardly, 
using boundary conditions (2 .8)  and (2 .11) ,  to give 

u =~(p,+q5,)(22-2zh)+cTzz. (2.14) 

When this is incorporated into the kinematic boundary condition (2.9) and the 
surfactant conservation relation (2 .12) ,  we get 

h,+~-,(h2a,)-fYa,(h3h,)  + f Y ~ , { h 3 [ ~ , ( h , ) ] , } + d ~ , ( h - ' h , )  = 0, ( 2 . 1 5 ~ )  

r, + a,(rh~,) - g%,(rh2h,) + g~8,{1%~[[%,(h,)] ,}  + gd[%,(rh-2h,) = @I,(r,). (2.15 b )  

These equations are coupled by the surfactant equation of state (2 .2) .  Note that in 
practice i t  is highly unlikely that gravitational and intermolecular forces would ever 
be of the same order, so we shall not consider situations in which both d and '3 
appear together. 

3. Similarity solutions 
In this section it is shown that a simple form of (2 .15) ,  in which there is a balance 

of viscous and Marangoni forces alone (i.e. Y = Y = d = 9 = 0) ,  possesses a set of 
similarity solutions describing the spreading of a region of localized surfactant. Three 
distributions of surfactant will be of particular interest in what follows: a planar 
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strip; an axisymmetric drop; and a planar front, behind which surfactant is supplied 
at a given rate. For convenience we shall refer to these cases simply as strip, drop and 
front in what follows. 

We shall suppose that the total mass of surfactant in x > 0. which in planar or 
axisymmetric geometry is respectively 

M = j r f d x .  or M = 2x (3.la, b )  

may be expressed as M = Qt". ( 3 .2 )  

Thus a strip or a drop is represented by a = 0 and a front by some a > 0. In  deriving 
similarity solutions we will take advantage of the fact that Q must be an invariant 
of (2 .15b) .  

For the strip or the drop, the surfactant spreads out rapidly enough for f to  
become everywhere quite small, even after moderate times. Accordingly the 
significance of the nonlinearity of the equation of state (2.2) diminishes, so that gz 
in (2.15) can be replaced by -ET,, where E = - d a / d f ( r  = 0). E may be set to unity 
by the transformation T - t  ET. We will therefore take E = 1 in what follows; this is 
equivalent to considering the limit /3- 03 in (2.2). 

When simplified as described above, (2.15) reduces to 

h t - - g x ( h 2 r z )  = 0, rt-8z(rhrx) = 0. (3 .3a,  b )  

Writing h(x,  t )  = H&), T(x ,  t )  = G o ( [ ) / t b  and E = x / t a ,  ( 3 . 3 )  becomes independent 
of t only if 2 a + b  = 1. Balancing powers of t in (3.1) and ( 3 . 2 )  gives a-b = a or 
2a-b = a in planar or axisymmetric geometries respectively. Thus we have in 
planar geometry 

u =$(l+a) ,  b=$(1-2a) ,  (3.4a) 

and in axisymmetric geometry 

u = f( 1 +a), b = +( 1 -a). (3.4b) 

This suggests that a planar strip spreads like d, while an axisymmetric drop spreads 
like ti. A range of values of a are potentially appropriate for a spreading planar front : 
0 < a < a. (Note that we must have b 2 0 ,  since if b were negative, f would grow 
without bound as t increases ; r must remain less than unity for a monolayer not to 
form a micelle.) a = 4, for which b = 0, is of interest as a limiting case (incidentally, 
it allows the use of a nonlinear equation of stat,e), and we shall consider it when 
discussing a planar front. We note that it is consistent with the prediction of BG: 
when surfactant is supplied to the monolayer a t  a rate of ti, the monolayer advances 
a t  the same rate. 

We shall be interested in later sections in solutions of (2.15) (including the effects 
of weak diffusivity, etc.) having a shock-like structure a t  the leading edge of the 
advancing monolayer, with h = 1, r = 0 ahead of the shock. The shock's position will 
be determined by the total mass of surfactant, and so we scale coordinates using Q 
to put the shock at  [ =  1. The formal transformation that we shall consider is 
therefore 
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so that the location of the shock in the original coordinates is given by x, = &(Q)ta. 
From ( 3 . 1 ) ,  we have 

(3 .6a ,  b )  

in planar or axisymmetric geometries respectively. Equation (2.15) transforms to 

We return now to the case in which 9 = 9' = d = 9 = O, and seek fixed points of 

atH,c + @,(Hi Go,) = 0, ( 3 . 8 ~ )  

a6Got + bG, +a,( Go H ,  Go,) = 0,  ( 3 . 8 b )  

with boundary conditions H ,  = 1 ,  Go = 0, for 6 > 1. We seek solutions with a shock 
a t  = 1, having discontinuities in H ,  and Go,: integrating (3 .8)  across 6 = 1 it is 
straightforward to show that upstream of the shock we must have 

the above equations, with H = H,(&) and G = G , ( t ) .  They are solutions of 

H o ( [  = 1 - ) = 2 ,  Go,(( = 1 - ) = -$a. (3 .9 )  

These conditions guarantee that the speed of the shock, x,, equals the surface 
velocity of the film at the shock, - r, h, so that there is no transport of surfactant 
ahead of the shock. The tip of the monolayer acts as an advancing rigid plate, and 
the discontinuity in film height is an adjustment to the free-surface boundary 
condition ahead of the shock. Fortunately when a = 0 ,  (3 .8 )  can be integrated 
exactly to  give, for 0 < 6 < 1,  

H ,  = 26, (2, = i (1 -6 )  (strip), ( 3 . 1 0 ~ )  

H ,  = 2 t 2 ,  Go = -&log( (drop). (3 .10b)  

Transforming back to (z, t )  coordinates, we can replace $om Gdc in (3 .6 )  by $: God( to  
determine [,, from which it follows that 

16Qt a 
x, = (12Qt); (strip), z, = (7) (drop). (3.11 a, b )  

Figure 1 shows these similarity solutions for the strip, the drop and the front. The 
frontal solution was determined numerically from ( 3 . 8 ) ;  in this case we cannot 
replace the integral in ( 3 . 6 ~ )  by $tG",d6 because the latter does not converge. (We 
remark here that similar solutions with both C ,  and Go, discontinuous a t  6 = 1 can 
be found, e.g. G = G , + i ( l - f )  in ( 3 . 1 0 ~ )  where G, is a constant. Numerical results 
indicate, however, that  in the presence of diffusion the solutions with G, > 0 are 
unstable. We shall therefore assume that G is everywhere continuous.) 
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FIGURE 1 .  Similarity solutions ( 3 . 1 0 ~ )  representing a spreading planar strip (-, spreading as tf) 
an axisymmetric drop (3.10b) (..., t a )  and a planar front (---, t i ) .  The film height H, ,  scaled 
surface shear stress -Go, and scaled surfactant distribution Go are plotted as functions of 5. 

The similarity solutions shown in figure 1 display a number of important features 
of surfactant spreading. They describe how, as the monolayer advances, the gradient 
in surfactant concentration across the monolayer diminishes in magnitude, reducing 
the shear stress that  drives the spreading, so that the rate of advance diminishes. The 
solutions are inaccurate in a number of respects, however. They are obviously 
physically invalid near f [  = 0, since one cannot have zero H and (in general) infinite G 
at  this point. We will see in 94 that in practice there is always a zone at  f [  = 0 across 
which the solution adjusts to  physically realizable boundary conditions. The 
solutions also contain shocks, contravening the assumptions underlying lubrication 
theory. When additional effects such as surface diffusion are included, however, the 
large gradients will be reduced and this difficulty will no longer be significant. 

4. Comparison with numerical solutions 
Having established the existence of some exact solutions of a simplified form of 

(2.15), we now determine the conditions under which these resemble those solutions 
of (2.15) that satisfy physically realistic boundary conditions and that are subject to 
weak diffusive and capillary forces. These full solutions have been obtained 
numerically by the method of lines, using second-order finite differences in space and 
Gear's method in time. The numerical scheme was developed from that used by 
Halpern & Grotberg (1991). The number of grid points used in the computations 
varied between N = 101 and N = 301. 

Rather than solve (2.15), i t  was more efficient to compute solutions of (3.7) in 
transformed coordinates ( f [ ,  7). We will follow the transformation of (3.5), but 
without using the normalization off[ and r: this is equivalent to setting ts = 1 in (3.5) 
and (3.7). We shall again consider three cases, to  be presented in turn below, the 
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spreading of a strip, a drop and a front. The boundary conditions used in the 
computations were chosen as follows. Far downstream, the film is undisturbed, 
i.e. H ( [ , 7 )  = 1 ,  G ( [ ,  7) = 0. The boundary condition upstream is determined 
by considering the total mass of surfactant (3 .1) ,  which for a planar geometry is 
Q = sp Gd[. Recall that Q must be an invariant of (3 .7b) ,  i.e. Q, = 0. Integrating 
(3.7 b )  by parts, we find that this condition requires that, in a planar geometry, 

Thus to model the spreading of a strip (a = 0) ,  we set G, = 0 at 6 = 0, as one would 
expect. The same condition is appropriate for a drop. For planar frontal spreading 
we set a = t in (4.1). The boundary conditions on H at [ = 0 are that H ,  = H,,, = 0. 

Integration was begun at  7 = 1 ,  starting with a uniform film ( H  = 1) and an 
arbitrary distribution of surfactant. For the strip and drop computations the 
following distribution was chosen : 

G ( [ ,  1) = iGa[ 1 - tanh (z)]. 6 - t o  
(4.2) 

For the front calculation, the initial surfactant distribution was 

G(5,1)  = (M;-9)exP ( -5/E,) .  (4.3) 

4.1 Planar strip 
Figure 2 ( a )  shows the evolution of film height and surfactant distribution from an 
initial condition (4.2) for which G,  = 1 ,  E0 = 0.5 and 6, = 0.1. The predicted position 
of the shock was determined from (3.11 a) ,  and the corresponding similarity solution 
is shown as a dotted line. The parameters used in the computation were 9 = 0.002, 
Y = lo-*, 3 = a2 = 0 and p = 100. 

As the strip of surfactant begins to spread, there is a welling of the film behind the 
leading edge of the monolayer, and a corresponding decrease of film height further 
behind this. As the elevation in film height grows, a shock-like structure develops in 
H and in the surface shear stress - G,. H becomes linear in 6, parallel t o  the similarity 
solution, over a growing part of its range behind the shock; at the same time -G,  
flattens across a similar range. The shocks in H and - G, are smoothed by both weak 
diffusive and capillary forces. The effect of cappilarity is demonstrated by the weak 
train of waves ahead of the advancing monolayer, and the narrow, decaying peak in 
- G  'ust behind the shock. 

Figure 2(b )  shows the subsequent evolution of the solution. Across much of the 
monolayer the computed solution lies very close to the similarity solution. There are 
obvious discrepancies, however, near [ = 0, where there is a boundary layer across 
which the upstream boundary conditions H ,  = G,  = 0 are accommodated, and at the 
shock. The upstream boundary layer decreases in size as time increases, and a 
growing proportion of the solution in this region approaches the similarity state. 
Note that the shear stress - G, has a maximum value very close to the point at  which 
the film is thinnest : viscous and Marangoni forces are dominant in this region, and 
a large surface shear stress is necessary to transport surfactant downstream where 
viscous stresses are greatest. A t  the shock, the lengthscale and magnitude of the 
wavetrain diminish as time increases, until the waves ultimately disappear ; likewise, 
the peak in -G,  vanishes also. As the shock advances and slows, the region over 
which diffusion smooths H and -G ,  broadens gradually, and the maximum film 
height falls as a result. 

5 J  
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FIGUR~E 2. The evolution of a planar strip in scaled coordinates: 6 = z/&, H = h, G = tir and 
G, = tgr,. ( a )  shows the transient behaviour at times 1.05, 1.1,1.2,1.5,2.0,5.0; the dotted line shows 
the corresponding similarity solution. ( b )  shows the subsequent development of the solution, at 
times 10,30, 100,300, 1000,3000. Arrows indicate increasing time. Parameter values are 9 = 0.002, 
Y = 0, 9' = d = 0, /3 = 100, N = 301. The inset on the lowest panel of ( b )  shows log ( H ( 0 , 7 ) )  
as a function of log7; the straight line has a slope of -:. 

The rate of decay of the upstream boundary layer can be estimated as follows. We 
observe first of all that H ( 0 ,  T ) ,  H,,,([, T )  and - (G,)max(c, T )  all change considerably 
more rapidly than the surfactant distribution G ( ~ , T ) .  It is clear also that the evolving 
boundary layer (at  least for H and G5) has a self-similar structure. To see how to 
exploit these features we consider the governing equations (3.7),  (the effects of 
capillarity and diffusion may be neglected from a leading-order approximation in 
this region) 

TH,  = icH5+$(H2G,)5, TG, = [G( i (+HG,) ] , .  (4 .4a,  b )  

Since G ,  appears to be an order of magnitude smaller than H,, we suppose that across 
the upstream boundary layer, a t  leading order, 

% [ + H G ,  = 0. (4 .5)  

This may be substituted into (4 .4a)  to give an equation in H ( ~ , T )  alone. The time 
dependence in this equation can be eliminated by supposing that 

It then follows immediately that ,u = t. The accuracy of this prediction is 
demonstrated in the inset in the lowest panel of figure 2 ( b ) ,  which shows log(H(0,~)) 
as a function of log7; the circles show computed results, the reference line has a slope 
of -Q. Thus the width of this boundary layer diminishes roughly as T-: in ( 6 , ~ )  
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FIGUFE 3. The eyolution of an axisymmetric drop. The coordinates used are 6 = s/&, H = h, 
G = Wand G, = t z r r , .  ( a )  and ( h )  show solutions at the same times and for the same parameter values 
as in figure 2. . . . , the corresponding similarity solution. The slope of the line in the inset in the 
lowest panel of ( b )  is -&. 

coordinates (and of course grows as ti in ( x ,  t )  coordinates). The film thins behind the 
shock also as t-f, and so will not reach zero in finite time. 

4.2 Axisymmetric drop 
Figure 3 (a,  b )  shows the evolution of a spreading axisymmetric drop. of surfactant. 
The initial conditions, parameter values and times are exactly as above. Many 
features of the drop’s behaviour resemble the spreading strip. There is an initial 
transient phase as the solution evolves from the initial condition towards the 
similarity state (figure 3a) .  A decaying boundary layer at the upstream end of the 
monolayer persists thereafter (figure 3 b ) ;  an argument similar to that used above 
predicts that  the boundary layer narrows, and the film thins, a t  a rate of d. The 
insert in the lowest panel of figure 3(b )  shows that in this case, however, the 
approximation is less accurate, which is reflected by the fact that  G, is not as small 
as for the strip. At early times there exist waves due to capillarity in the film height 
ahead of the shock, and a weak peak in surface shear stress just behind the stock. 
These disappear slightly more rapidly than in the strip computation. 

Apart from the obvious difference in the shape of the similarity solution, the 
significant difference with the previous case is that the rate at which the diffusive 
lcngthscale grows is much greater. The maximum film height is never as great as 
before (this is due to  some extent to differences in the shapes of the similarity 
solutions), and it falls more quickly. It can be scen to fall even in figure 3 (a ) ,  before 
the similarity state has been attained. For times greater than about 1000 (figure 3b) 
the similarity solution is a poor approximation to the numerical solution, and the 
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FIQURE 4. The evolution of a planar front. Here = z/&, H = h,  G = r and G,  = r,t'. . . . , the 
corresponding similarity solution. The times shown are 3, 10, 100, lo3, lo4 and lo6. Parameter 
values are as in figure 2 except that 9 = 

effect of diffusion appears to be confined no longer to a thin region at the shock. Its 
influence is apparent, for example, in the distribution of surfactant near 6 = 0:  in its 
absence, G(O,T) remains almost constant and - C,(O, T) increases (10 < 7 < 100, 
figure 3 6 )  ; at  later times it causes G(O,7)  and - G,(O, 7) to fall rapidly. 

4.3 Planar front 

The evolution of the solution is rather different in this case (see figure 4) to the two 
preceding examples (the only difference in parameter values to the preceding cases 
is that 9 = 0.001; in this case 6, = 0.25). Surfactant is supplied at a rate of ti a t  
6 = 0, and from (4.1) there is therefore a surface shear stress a t  6 = 0 that drives a flow 
from 6 < 0. The film therefore wells up to form a shock much more rapidly than i t  
thins. As time progresses, however, thinning occurs over the upstream 30% of the 
monolayer. The width of this thinning region no longer decreases like some power of 
7,  but is instead constrained by the shape of the similarity solution. The upstream 
boundary condition requires the surfactant concentration to rise slowly at 6 = 0, 
while the flux of surfactant at the origin decreases with time (recall that 
-r, = -G,/t;). 

As the monolayer advances, the gradient of surfactant concentration appears to 
steepen near its leading edge to form a shock. (The steepening is an artifact of the 
similarity scaling ; surfactant gradients are always diminishing because the front is 
advancing.) A similarity solution is shown for comparison as a dotted line. As before, 
capillary forces give rise to a weak wavetrain in H ahead of the shock, that narrows 
and decays very rapidly; there is very little evidence of a peak in -G, behind the 
shock. Whereas in both previous examples diffusion ultimately caused a broadening 
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of the shock and a reduction in the maximum film height, in this case no such 
behaviour is observed. The solution instead evolves to a state in which the shape of 
H and - G ,  at the shock vary very little over long timescales. 

5. Asymptotic structure of the shock 
The numerical solutions have revealed a number of significant features of the 

shock structure: at  early times a capillary wavetrain exists ahead of it, and a 
corresponding peak in the shear stress lies behind it ; these features disappear as time 
progresses and the shock speed diminishes ; for the strip and the drop, the shock is 
gradually destroyed by growing diffusive forces, whereas the shock appears to persist 
indefinitely in the frontal-spreading case. In this section we will use asymptotic 
methods to explain and quantify these observations, and to establish the timescales 
over which the similarity solutions provide reasonable approximations to the full 
problem. 

In addition to diffusive and capillary effects, described respectively in ss5.2 and 
5.3,  we take account also of the effects of a vertical gravitational field, which can play 
a significant role in the long-term development of the solution ($5.4). Additional 
effects are considered in the Appendices : in Appendix A it is shown how the presence 
of a very weak concentration of surfactant on the film ahead of the monolayer 
smooths the shock, and how it can ultimately halt the advance of the monolayer ; the 
importance of additional effects such as surface viscosity and inertia, usually 
negligible in the lubrication-theory approximation but here singular perturbations, 
are considered in Appendix B, and shown to be potentially significant at early times. 

5.1. Scalings at the shock 
In order to understand how the shock at  the leading edge of an advancing surfactant 
monolayer is affected by weak diffusive, capillary and gravitational forces, we move 
to a frame in which the shock is stationary, and reformulate the governing equations 
in an inner coordinate system having an arbitrary lengthscale X ( t ) .  Let us write 

X A  
x = xs( t )  + X t ,  t = T, h(x ,  t )  = H ( L  TI, r(x, t )  = t"+bG(5, TI, (5.1) 

where z,(t) = E,ta is the position of the shock (recall from 53 that 2a+b = 1). Note 
that in this inner region the surfactant concentration is scaled so that with Gc = O( l) ,  
it will match with the outer similarity solution (scaled by 3.5) .  We shall require of 
course that 3 < l , Y  < 1,9  4 1, and that X ( t )  4 x,(t). Using (5.1), the governing 
equations (2.15) (with d = 0 and d a / d r  = - 1) become 

BTa+b Y T a + b  
(X HT - & e x )  Ta+b = a&.Ht+i(H2G&+ (-> (H3H&-(-) 3x3 (H3Heg)6, 

(XG,  - t ~ , - X ) ~ a + b  + ( Ta+b )T P'a+b'G = at, Gi+ (HGG& 

Equation (5 .2)  is exact for a planar geometry, and a leading-order approximation in 
an axisymmetric geometry. This is because the lengthscale of the inner region is 
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always much smaller than the length of the monolayer (X 4 x,), so the curvature of 
the shock has a negligible influence on the structure of the inner layer. 

From ( 5 . 2 )  it is clear that the lengthscales over which gravitational, capillary and 
diffusive forces balance viscous and Marangoni forces are given respectively by 

X, = Y T a f b ,  X, = (YTa+b)fr, X, = 9Ta+b.  (5.3)  

We define the following times at  which the various lengthscales of the problem are 
of the same order: 

(5.4) 
T 9 -  - 9-l/* at  which X ,  - xs; 

l / ( l + b )  

Ti79 = ($) at  which X, - X,v. 

Tg and T,, are defined similarly, with 9 replaced by Y in (5.4). For times of order 
1 or greater, X, is always much smaller than 2,. Note that T,, < T,, and that 

I (5.5) 

Again, similar relations hold in (5 .5)  with 9 replaced by 3. 
Before proceeding further, we must estimate the size of the terms on the left-hand 

side of (5 .2) .  With X = X,, for cxample, the terms XTa+b are proportional to 9 T b .  
The requirement that X ,  -4 x,, i.e. that 9 T b  4 1 ,  ensures that these terms are 
negligible. The term (X/T"+b)T vanishes identically when X = X,. Similar arguments 
show that these terms are small when X = X, or X = X,. We must assume that the 
remaining terms involving H ,  and G, are also small: this assumption is supported 
by numerical results, which have shown the similarity solution to  be attracting. We 
can then proceed with a quasi-steady approximation, regarding T merely as a 
parameter and ignoring effects due to changes in lengthscales a t  the shock, i.e. with 
the left-hand side of (5 .2)  set to zero. 

At this stage it is convenient to rescale (5 .2)  to remove cxpjicit dependence on the 
outer solution (the factor at,) ,  which is done by sctting 6 = [ats and g ,  = X,(at,);. 
The boundary conditions appropriate to the resealed equations describing the 
structure of the inner solution at  the shock are then 

( 5 . 6 ~ )  

(5.6b) 

With the terms on its left-hand side neglected, (5 .2)  may be integrated once which, 
using (5.6),  gives 

(5 .7u)  

It is worth noting that (5.7b) is a t  first sight not consistent with (5 .6b ) :  the final 
diffusive term in (5 .7b )  does not vanish as c+- 00,  leaving an 0 ( 1 )  imbalance. This 
turns out not to be a difficulty, however, as solutions of (5.7) always satisfy (5 .6b )  a t  
leading order, i.e. a t  O([) in G. 

We now examine how the structure of the shock depends on the relative sizes of 
the governing parameters, and determine the timcscalcs over which different forces 
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balance. It is clear first of all that  if b > 0, as it is for a strip or a drop (see 3.4), then 
T8 and Tg are finite (5.4), because X, and X, grow faster than x,. This means that the 
shock will be destroyed in finite time by either diffusive or gravitational forces. Thus 
we expect that with 9 = 0.002 and 9 = 0 (as in the computations in $4.1 and $4.2), 
diffusion will destroy the shock a t  the leading edge of a strip (drop) in a time 
T, - O( 10') (0( lo5)) ; these times are consistent with the numerical results in figures 
2 (b )  and 3 (b ) .  For a planar front, however, b = 0 so that the diffusive and gravitational 
lengthscales grow a t  the same rate as the length of the monolayer, explaining why 
the shock in figure 4 persists indefinitely with negligible change in structure. 

At sufficiently small times the capillary lengthscale z,y will always exceed both X, 
and X,. For times much in excess of Tgy or T,,y, however, capillary effects will be 
swamped by diffusion or gravity. This, also, corresponds with the numerical results 
of $4. The disappearance of the capillary wavetrain ahead of the shock occurs 
roughly a t  Tgy in each case: for the strip, TgY x 1000 (figure 2 b ) ;  for the drop 
TgY x 500 (figure 3b); for the front Tgy x lo5 (figure 4). 

We postpone discussion of the effects of gravity to $5.4. The next two subsections 
concern the interaction of diffusive and capillary forces, so that we asjsume that 
9 < 9. We begin in $5.2 by examining the situation in which X, 9 X,, i.e. for 
T9,y + T + T,; in this case the surfactant distribution is smoothed by diffusion, and 
because diffusive, viscous and Marangoni forces are of the same order the film 
height is smoothed also ; capillary effects are negligible. At earlier times, however 
(i.e. T < Tgy), 2, $ X, so that capillary forces are responsible for smoothing the 
film height. Although the surfactant distribution is affected by these forces, a 
discontinuity in its gradient remains which is smooth by diffusion over the much 
smaller lengthscale X,. This situation is described in $5.3. The monolayer's 
behaviour a t  late times, when T @ T9 and X, @ xs, will be considered in $6 below. 

5.2 Purely diffusive inner layer 

Setting X = X, in (5.7) with X, < X, and z,+ X, gives, at leading order, 

H+iH2G, = 1,  G+HGG,+G, = 0. (5.8) 

Choosing the signs of square roots to  be consistent with the boundary conditions 
(5.6), (5.8) may be rearranged so that 

, G,= G2-(G2+G4)i. 

(5.9b) may integratcd to give 

sinh-'(;)-coth (;sinh-'($)) = 5 - 6 ,  

(5.9a, b )  

(5.10) 

where f;, is an constant of integration that may be set to zero without loss of 
generality. This inner diffusive solution, which corresponds exactly t o  that obtained 
by BG, is shown in figure 5. Ahead of the shock, H and G decay exponentially, 
whereas behind it they decay algcbraically, explaining why the shock has a very 
sharp leading edge and much smoother shape behind. The inner solution in figure 5 
clearly captures the large-time shock structure shown in figures 2 ( b )  ( t  > 1000) and 
4 ( t  > lo4), for example. (Note that because X, and x, grow a t  the same rate for a 
spreading front, the effects of diffusion could have been included in the computation 
of the similarity solution, i.e. in determining the fixed points of (3.7).) 
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FIGURE 5. The diffusive inner-layer solution satisfying (5.8), showing film height, 
shear stress and surfact,ant distribution. 

5.3. Capillary inner layer, digusive sublayer 

Setting X = 2, in (5.7) with X, 4 3, and X, < 2, gives 

G+HGG,-+GH2H,,,+SG, = 0 , j  
1 Hf$H2G,-$H3HCc,  = 1, 

(5.11) 

where S = X,/l,. Although 6 4 1 for 1’ < T,,, diffusive effects are important over 
a thin, but growing, sublayer of width S in the scaling of (5.11). Diffusion smooths the 
discontinuity in shear stress over this narrow region while capillarity smooths the 
film height over a region of width (O(1).  

Neglecting the diffusive term, (5.11) can be rearranged as follows. There are two 
possible solutions, one in which 

6(H - 2) - 2(3 - H )  
HC,<= H3 ’ G,= H 2  ’ 

and the other in which 
3 ( H - l )  

H a  = H3 , G = 0 .  

(5.12 a )  

(5.12b) 

(The equation for H in (5.12 b )  corresponds to one which arises frequently in problems 
involving capillary forces acting on translating free surfaces of thin viscous films, and 
is discussed by Bretherton (1961), for example.) The solution of (5.11) is obtained by 
patching together the appropriate solutions of ( 5 . 1 2 ~ )  upstream of C = 0, say, and 
(5.12b) downstream. 

Before computing this solution it is useful to determine the asymptotic structure 
of the solutions of (5.12) in the limits C+ f 00. Linearizing H about 2 and about 1 in 
each case, and choosing solutions consistent with the boundary conditions (5.6), we 
find that as C+-OO, 

H - z-c,exp[(+$~], G - - t 5 - t c , ( ~ ) ~ e x P [ ( ~ ) t ~ ,  (5.13) 
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FIGURE 6. -, The capillary inner-layer solution satisfying (5.12) ; ---, a solution 

of the diffusive sublayer equations (5.15). 

and as C+m, 

(5.14) 
3; 

H - 1 + exp ( - 5) [c, cos ( $ 3 ) ~ )  + C, sin ( $ 3 ~ ~ 1 ,  G = 0, 

where C,, C, and C, are arbitrary constants. 
This solution has been obtained numerically and is shown with solid lines in figure 

6 .  The procedure used to compute this solution was to take some initial value go far 
upstream of the shock, and to integrate (5.12a) downstream using (5.13) as an initial 
condition, choosing some value of C,. This integration was stopped as soon as G 
reached zero (at which point H = H, ,  say), and then resumed using (5.12b). The value 
of C, was varied until a solution of the form (5.14) was obtained for large positive 
values of 6. Since c0 was arbitrary, the shock could then be repositioned at  5 = 0. 

The solution of (5.11) has discontinuities in H ,  and r, that are smoothed over a 
thin diffusive sublayer of width 8. The structure of the solution in this region is 
revealed if we take 6 = 8c H(C) = H ,  + S3B((;) and G(C) = SQ((;). To leading order, this 
gives 

H ,  + qp 2 c o-- 5 q j 3  3 c 555-  - 1, ( 5 . 1 5 ~ )  

(5.15b) G +  H ,  GG.g-@HE Hm+ Gc = 0. 

(5.15) may be integrated to give o(c): 

($- l )~+~H,G+logG = 0. (5.16) 

This inner solution is shown as a dotted line in figure 6 ;  its predominant effect is to 
smooth G,. 
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This asymptotic solution contains the important features of a sizable class 
of solutions of the partial differential equations (figure 2 ,  2 < t < 3 0 ;  figure 3,  
2 < t < 10 ; figure 4 , l O  < t < 100). Notice that for the strip and the front, the capillary 
lengthscale decreases in the coordinate systems of figures 2 and 4, but for the drop 
it is constant (figure 3 ) .  Ahead of the shock lies a train of decaying waves with a 
structure approximately by (5 .14 ) .  Behind the shock the inner solution decays 
exponentially, suggesting that the height of the film will be greater than in the purely 
diffusive case described in $5.2.  Within the inner region in which Marangoni and 
capillary forces are balanced, the portion of the surface covered by surfactant must 
have surface velocity equal to the shock speed. This balance is implicit in (5 .12a) ,  and 
is responsible for the steepening of the surfactant distribution just behind the shock. 
The large discontinuity in surface shear stress is smoothed off by diffusion a t  the 
shock. Ahead of the shock, where r = 0, the direction of the velocity field is 
determined entirely by the sign of H,,,, and from (5 .12b)  this implies that the flow is 
forward for H > 1 and reversed for H < 1. 

5.4.  The effects of gravity 
Gravity plays a minor role in the evolution of the shock when 59 x 9. At small times 
(T < Tgy) there is a wide capillary inner layer and smaller sublayer in which diffusive 
and gravitational forces are apparently of the same size. However, while diffusion 
remains a singular perturbation (smoothing the discontinuity in shear stress), the 
film is smoothed by capillarity, so that gravity provides only a weak, regular 
perturbation to the solution described in $5.3.  Gravity is more important at larger 
times (Ta9 4 T 4 T9), when it balances diffusion in an inner layer; capillarity is no 
longer significant in this case. Solutions for this inner layer, parameterized by 
$= 9/59, may be determined straightforwardly, but it is only once $becomes small 
(with Y $59) that significant differences to the purely diffusive case (figure 5 )  are 
evident, so we restrict, our attention to  this case. 

Let us therefore suppose that 8 4  1 and that TBy < T < T,, so that x, 4 X ,  < X, 
% z,, making capillary effects negligible. Setting X = X, in (5 .7 )  we obtain 

1 H+iH2G,+iH3H, = 1 ,  

C + ( G H + ~ ) G , + ~ G H ~ H ,  = o.J 
(5.17) 

Although $is small, it multiplies a singular term, and the situation is similar to that 
in $ 5 . 3 :  the film height is smoothed across a gravitational inner layer, and the 
surfactant distribution is smoothed across a narrower diffusive sublayer. 

Setting 8= 0 in (5 .17)  gives two sets of equations, with solutions which may be 
patched together across 1: = 0, say. Upstream of this point, 

while downstream 

6 ( 2  - H )  2 ( 3 - H )  
, G , = -  

H 2  ’ H3 
H ,  = 

3 ( 1 - H )  
, G = O .  

H3 
H, = 

(5 .18a)  

(5 .18b)  

Since H + 2  as [+-oo, we must have H = 2 ,  G = -;[for [ <  0, as H = 2 is a stable 
fixed point of ( 5 . 1 8 ~ ) .  Across 5 = 0 ,  H and G are continuous but their first derivatives 
are not. In  5 > 0 H decreases monotonically from 2 to 1, according to 

H + i H 2 + + H 3 + l o g ( H - 1 )  = i(20-99g); (5 .19)  
clearly H diminishes exponentially far ahead of the shock. 
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To smooth the discontinuities in G ,  and H ,  a t  5 = 0, (5 .17)  may be rescaled using 
5 = FC, H = 2+6H(5)  and G = SG(5). The equations governing the solution in this 
innermost diffusive layer reduce a t  leading order to 

-_ - -_ - 

(5 .20)  

which has a solution equivalent to (5 .16)  with H ,  replaced by 2 ,  thus resembling the 
dotted curve on figure 6 .  

At earlier times (TgY 4 T 4 T,,), X ,  4 XY 4 X,, so that the discontinuity in H ,  
is smoothed over the capillary lengthscale, and the discontinuity in G,  is smoothed 
over the smaller diffusive lengthscale, but the basic features of the solution 
correspond to the situation described above. Before this (T 4 Tgy) capillarity 
smooths the film and gravity is not significant. Thus, with 9 < 9 we conclude that 
for I’ Q T, the surfactant distribution a t  the leading edge of the monolayer is always 
controlled by diffusion, but that  when TgY 4 T 4 Tg the disturbance to  the film 
extends O(X,) ahead of the leading edge of the monolayer. We have confirmed that 
this corresponds with numerical solutions of (2 .15 ) .  

6. Diffusive spreading 
If 9 4 1 and 9 4 1, we have seen that the shock a t  the leading edge of a spreading 

strip or drop of surfactant is destroyed in finite time by either diffusive or 
gravitational forces, depending on the relative sizes of 9 and 9. In  this section we 
consider the situation in which diffusion ultimately becomes the dominant mode of 
surfactant transport. We consider cases in which either 9 Q 1 (when we require 
9 4 9) or in which 9 = O(1) or larger (and 9 4 1) .  In  either case diffusion requires 
a finite time to become significant everywhere in the flow, and to be no longer 
confined to a boundary layer a t  the leading edge of the monolayer: this is the time 
a t  which the coefficient of the diffusive term in (3.7 b )  is no longer small 

9 t b  % 1 ,  (6 .1 )  

where b is given by (3 .4 ) .  It is clear from (5 .4 )  that  (6 .1 )  implies that  X ,  9 x,. With 
(6 .1 )  satisfied, diffusion governs the surfactant distribution, and Marangoni forces 
then determine the corresponding film shape. To express this balance, we write 

and 

X v = $ $  T = t ,  

wherc v = $ in a planar geometry and v = 2 in axisymmetry. This scaling assumes the 
mass of surfactant ( 3 . 1 )  is given by (3 .2 ) .  Substituting these expressions into (2 .15)  
(setting 9 = Y = d = 0 )  gives 

T H ,  = bvH+&,lH,+@,(G,)+O - 
((kb)” )3  

T G ,  = bvG+bG,+a,(G,)+O - 
((a’tb).) .  

( 6 . 4 ~ )  

(6 .4b )  
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FIQURE 7. The large-time evolution of a planar strip, shown in stretched coordinates 7 = x/(%)i .  
Film heipht h, scaled surface shear stress -G ,  = -(B) r, and scaled surfactant distribution 
G = (?&)?rare shown at times 1.5 ,2 ,4 ,8 ,  12, 16 (arrows indicate increasing time). The heavy dotted 
lines in the lower two panels show the corresponding similarity solution (6.5). Parameter values are 
9 =  1, Y = Y = d = O , P =  100. 

We seek fixed points of (6.4), subject to the boundary conditions H + O , C + O  as 
y+ CO. Simple solutions arise in the case a = 0,  when it is straightforward to show 
that 

where c = 2 d  for a spreading strip and c = 87c for a spreading drop. 
The validity of this asymptotic result (6.5) can be tested against numerical 

solutions of the full governing equations. Typical solutions, recast in ( 7 , T )  
coordinates (using 6.2) and with r scaled appropriately (using 6.3), are shown in 
figure 7 . 9  = 1 in this calculation, so that the surfactant distribution evolves rapidly 
to its predicted form ; the computed values of G and G, are almost indistinguishable 
from (6.5) (shown as heavy dotted lines in the figure) for T > 12. The film height 
behaves as expected over the majority of its range. The boundary condition H ,  = 0 
at  y = 0,  however, is not consistent with (6.5) and so a thinning boundary layer is 
present across which the upstream boundary condition is accommodated. 

H = (&/c)exp[-+y*], G = 2H, (6.5) 

7. Film rupture 
Although the film deformations induced by a spreading monolayer can be very 

large, we have demonstrated that when subject to viscous and Marangoni forces 
alone, the dramatic thinning of the film beneath the monolayer is never sufficient to 
drive the film to  rupture in finite time. Indeed, the numerical results in $4 indicated 
that the rate a t  which the film thins beneath a strip (drop) of spreading surfactant 
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is approximately t-i (t-i) ; it  was also demonstrated that the corresponding length of 
the depression in film height behind the shocks grew as ti ( t i ) .  These predictions were 
not strongly dependent on the initial distribution of surfactant. 

Nevertheless, rupture of the film shortly after surfactant is deposited on its upper 
surface has been observed in experiments (GG2; Ahmad & Hansen 1972). An 
additional mechanism must be responsible for these observations. In  this section, we 
examine a likely candidate: van der Waals forces, operating through the terms 
proportional to d in (2.15). We hypothesize that rupture arises through a two-part 
process : first, the thinning of the film due to Marangoni effects is sufficiently vigorous 
to reduce the minimum film thickness to less than 1000 A, the thickness beneath 
which van der Waals forces are effective; second, an instability due to these forces 
(Ruckenstein & Jain 1974; Williams & Davis 1982) drives the film thickness to zero 
at some point. The minimum film heights achieved in the numerical simulations of 
$ 4  by 0 ( 1 )  times are generally no less than about one tenth of the undisturbed film 
height, indicating that, with thinning as described by this model, rupture cannot be 
expected in films of thicknesses greater than about 1 pm. Gravitational forces are not 
significant in such thin films (since $9 is proportional to B2),  so we set $9 = 0 for the 
remainder of this section. It is important to remember, however, that  the film 
thicknesses used in experiments in which rupture was observed were O(1 mm) (GG2; 
Ahmad & Hansen 1972). 

Although Marangoni flows are primarily responsible for the thinning of the film 
that subsequently results in its disruption, the presence of a surfactant monolayer in 
fact has a stabilizing effect on a growing rupture instability. The extent to which 
surfactant inhibits the growth of a deformation of an initially uniform film, in both 
the linear and nonlinear regimes, is discussed in 87.1. The instability of a spreading 
monolayer is then examined in 87.2. 

7.1. Stability of a uniform f i lm 

We review first the linear stability of a uniform flight of height h, and uniform 
surfactant concentration r, (Ruckenstein & Jain 1974 ; Sharma & Ruckenstein 
1986). Let a = -(dcr/dT) (r,), so that a > 0. We suppose that h = h,+hlei”2+st, 
r=I‘O+rleikz+st,  where h, -4 l , f l  -4 1.  Substituting these expressions into (2.15) 
and linearizing, a dispersion relation relating s to k is obtained. Neglecting 
Marangoni effects (i.e. setting a = 0 ) ,  the competition between van der Waals and 
capillary forces is expressed by 

s = (Ah,’) k2 - (tsPh;) k4. (7.1) 

All sufficiently long waves are unstable, i.e. s > 0 provided 0 < k < k, = ( S d / Y h : ) i ;  
shorter waves are stabilized by capillarity. The effect of insoluble surfactant on the 
film may be included by considering non-zero a. In this case the dispersion relation 
becomes rather unwieldy, but one may show that the range of unstable wavenumbers 
remains unchanged, while the growth rate of instabilities is reduced. The presence of 
surfactant reduces the wavenumber of the most unstable mode which is reduced by 
up to  10%. In  the limit a + CQ, it  may be shown that the growth rate is reduced to 
exactly t of its value when a = 0 (given by (7.1)).  

The mechanism by which surfactant stabilizes the rupture process is as follows. 
Consider an initial disturbance to a film on which there is a uniform distribution of 
surfactant. The potential @ (representing intermolecular forces) rises beneath 
depressions and falls where the film is elevated (see (2.5), (2.7)),  so that flows are 
generated in the film away from depressions towards elevations, causing the original 
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FIGURE 8. The nonlinear evolution of a rupture instability of an  initially uniform film is represented 
in (a) by the dependence of minimum film thickness with time. A uniform distribution of surfactant 
r,, = 0.1 was present on the surface at t = 0. The solutions for values of surfactant activity ---, 
,!l= 0.01; ---, 0.1; . . ., 1 ;  -, 100 are compared with -.-, the evolution in the absence of 
surfactant. Parameter values are I = 1, Y = 0.1; 301 grid points covered a domain of length 1, 
corresponding to  a half wavelength of the instability. ( b )  shows how the equation of state (2.2), 
(2.3), depends on /3. 

disturbance to grow in amplitude. These flows advect surfactant away from 
depressions, increasing the surface tension a t  depressions and decreasing it where the 
film is elevated, producing gradients of surface tension and hence shear stresses that 
oppose the flows. Thus surfactant decreases the growth rate of the instability, but 
does not affect critical wavelengths. 

Even once the instability grows in amplitude, the stabilizing influence of 
surfactant remains relatively weak. This we established by examining numerically 
the evolution of an initially sinusoidal disturbance of a uniform film, for a range of 
different equations of state. The parameter values used were a? = 1, Y = 0.1, 
h, = 1, r, = 0.1 and the wavelength of the instability was h = 2 n / k  = 2 ,  close to the 
most unstable wavelength for these parameter values ( A  = 1.62 is the most unstable 
wavelength when a = 0, h = 1.81 the most unstable wavelength for a > 0.).  A 
nonlinear equation of state ( ( 2 . 2 ) ,  ( 2 . 3 ) )  was employed, and values of f3 ranging from 
0.01 to 100 were considered. The shape of the different equations of state is shown in 
figure 8 ( b ) .  At t = 0 the film was given a sinusoidal disturbance of amplitude 0.1. The 
computations were run until hmin reached 0 . 3 ;  this was adequate for a reasonable 
assessment of the time required for the film to rupture. hmin is plotted as a function 
of time in figure 8 ( a )  ; it is clcar that despite large variations in f3,  corresponding to 
a three-fold variation in d a / d r ( r  = r,,), that rupture times were fairly insensitive to 
the activity of the surfactant, varying by less than 20%. 

The presence of a surfactant monolayer will never prevent an instability from 
developing, and its ability to slow the time taken for a film to rupture appears not 
to be particularly powerful, in either the linear or the nonlinear regimes. 

7.2. Instability of a spreading monolayer 

Obviously the predictions of linear theory cannot be applied directly to the non- 
uniform, unsteady film profiles and surfactant distributions of a spreading surfactant 
monolayer. However, it provides a useful guide to those circumstances in which 
rupture can be expected to occur. A simple first approximation is to suppose that the 
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FIGURE 9. The rupture instability of a spreading droplet, shown at times 2.2,2.4,2.6,2.66,2.68 and 
2.695 using the same scaled coordinates and variables as figure 3. Parameter values are Y = lo-*, 
d = 9 = 0.002, Y = 0, = 100, G,  = 1, 6, = 0.1, 6,  = 0.05, N = 301. 

instability grows much faster than the rate a t  which the film changes its shape. The 
wavelength of the initial disturbance is roughly proportional to the width of the 
thinned region; this width must exceed A, = 2n/k, cc ( Y h : / d ) i  for rupture to  be 
expected. Assuming that A, N tll”, and that the minimum film thickness is O(t-l/”), 
then rupture can be expected a t  times at which A, - A,, i.e. at times t, - (Y/d)”” .  
With v = 6 for a strip, and v = 8 for a drop, rupture can be anticipated at O( 1) t‘ imes 
provided 9’ and d are of approximately the same order. 

This is indeed what is observed numerically. The evolution of a spreading drop in 
the presence of weak van der Waals forces was determined by computing solutions 
of (3.7), using exactly the same parameter values as in figure 3 (so that Y = lop4) 
with the exception of the following: the steepest possible initial conditions were 
employed, to encourage rapid thinning (G, = 1, E, = 0.1, and tw = 0.05 or 0.01 in 
(4.2)) ; and d was set to Using tw = 0.05, the computed rupture 
times corresponding to these values of d were respectively approximately 180, 16, 
and 2.7 (integration began a t  r = 1). Making the initial surfactant distribution 
steeper reduced rupture times slightly: with tw = 0.01, they became 62, 6.5 and 1.6. 
Since the evolution of the entire monolayer had to  be computed, computational 
resources were inadequate to carry the calculation to the very final stages of rupture, 
but were sufficient for a reasonable estimate of rupture time to  be made. 

and 5, = 0.05 are presented in figure 9, a t  times 
2.2, 2.4, 2.6, 2.66, 2.68 and 2.695. Note that similarity variables were used, so that 
over these times the majority of the solution evolves very little. At the point a t  which 
the film is thinnest, however, a rupture instability begins to grow, and a narrow 
depression in film height develops rapidly. As described above, the pressure gradients 

and 

Results for the case with d = 
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arising from non-uniform intermolecular forces advect surfactant away from the 
depressed region, and large surface shear stresses develop that oppose the growing 
instability. The computation was halted once these gradients could no longer be 
resolved adequately ; conservation of mass of surfactant on the upper surface of the 
film was the condition used to  ensure the accuracy of the results. 

Comparison of figures 2 and 3 demonstrate the greater propensity of the film 
beneath a spreading drop to thin compared to that beneath a strip. The time taken 
for a strip to rupture is correspondingly somewhat greater. With tW = 0.05, and 
setting d = lop4 ( lop3), with all the remaining parameters as in figure 9, the rupture 
time of a strip was found to  be approximately 87 (7.5); all the main features of the 
flow resembled figure 9. 

8. Discussion 
The similarity arguments and asymptotic methods of $$3, 5 and 6 have been 

demonstrated to  provide valuable approximations of a substantial class of solutions 
of the nonlinear evolution equations (2.15). We have shown that if diffusive, 
gravitational and capillary forces are weak, the rate a t  which a monolayer of 
insoluble surfactant spreads is determined, a t  least initially, by a balance of viscous 
and Marangoni forces. An axisymmetric drop advances as ti, a planar strip as ti and 
a planar front (for which surfactant is supplied at a rate of t i)  as tf ( $ 3 ) .  These rates 
were predicted also by Espinosa (1991) ; the drop rate corresponds with a numerical 
prediction in GG1, and the front rate with the estimate of BG. A shock exists a t  the 
leading edge of the monolayer, across which is an abrupt transition in the height of 
the film, and a corresponding discontinuity in shear stress. As the surfactant spreads, 
its rate of advance falls, and different balances of forces control the structure of the 
shock. Initially, capillarity smooths the film; at later stages, either diffusion or 
gravity determine the form of the shock ($5).  For a drop or a strip, a t  sufficiently 
large times the effect of these forces is no longer confined to a narrow region, and one 
or the other eventually dominates the entire spreading process. If diffusion is the 
more significant, for exam le, the spreading rate of a drop (strip) changes after a time 
0(9-2) ( O ( W 3 ) )  to  ( 9 t ) Z  ($6). (This prediction is valid for arbitrary 9, and 
corresponds to a numerical result in GG1.) A planar front, on the other hand, will 
advance subject to  the viscous-Marangoni balance indefinitely, provided 9 $ 1. 

At the upstream end of the monolayer the film becomes progressively thinner, to 
compensate for the increasing size of the region in which the film is elevated above 
its undisturbed height. The rate of thinning was estimated in $4, for a film subject 
to viscous and Marangoni forces alone; it was demonstrated that under these 
conditions, an infinite time would be required for the film height to fall to zero. Once 
the film is sufficiently thin, however, intermolecular forces can become significant. It 
was demonstrated in $ 7  that, after severe thinning due to Marangoni effects, an 
instability due to van der Waals forces can cause the film to rupture, provided, 
however, that these forces were a t  least of the magnitude of the stabilizing capillary 
forces (i.e. Y = O ( d ) ) .  

Despite the presence of a shock, in apparent violation of the assumptions of 
lubrication theory, the model of $ 2  may be demonstrated a posteriori to be consistent 
a t  all but the earliest times, not just in the majority of the flow but also in the vicinity 
of the shock. A variety of terms originally neglected from the model are examined in 
Appendix B (representing film stretching, inertia and surface viscosity) and are 
shown to be significant only in the initial stages of spreading. Their effects are always 

P 
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ultimately suppressed either by capillarity, diffusion or gravity. Clearly the model’s 
predictions at  early times, when surface tension gradients are largest, must be 
interpreted with care. 

An additional question of consistency concerns the use of small values of 9, 
despite the requirement that Y = 0(1) for the surface tension (2.1) in the normal 
stress condition (2.10) to be independent of r. We found that when Y is small, 
capillary effects are significant only in the vicinity of the shock, where r is very close 
to 0, so that a(T) (in (2.1)) is close to 1. The value of the surface tension at the shock 
is therefore underestimated in (2.10) by an O(e2)  amount. This inaccuracy has no 
qualitative significance, however, so it is reasonable to neglect the effects of 
surfactant on the mean surface tension of the film?. 

To test the accuracy and applicability of these results, it is instructive to establish 
parameter values typical of conditions in experiment and in the lung. Because large 
variations in physical quantities can be anticipated, particularly in physiological 
fluids, we make only rough order-of-magnitude estimates. Let us suppose that 
x cm2/s (GGZ), g x lo3 cm s2, p x 1 g/cm3,8 x 10 dyn/cm, am x 10 dyn/cm, 

2 x erg and E x lo+. Film thicknesses and viscosities typical (a)  of experiment 
are I? x 1 mm, p x lo-’ g/(cm s) (GG2), (b) of airway mucus are I? x 10 pm, p x lo-’ 
g/(cms) and (c) of alveolar liquid lining are I? x 1 pm, ,u x g/(cms). In each 
case 9’ = 0(10-4), and the values of 9,9, d ,  and E2Re (see $2) are then respectively: 
( a )  0(10-6, 1, 10-l2, (b) 0(10-4, (c) 0(10-4, 

Because 9 is O(1) in experiments (GG2; Ahmad & Hansen 1972), it controls the 
spreading rate of a monolayer from the early stages, preventing comparison with the 
similarity estimates of $3. This accounts for the considerable discrepancy between 
the predicted spreading rate of a drop of surfactant, ti when B 4 1, and the spreading 
rates measured by GG2 (they found exponents greater than 0.6). GG2 showed, 
however, that, using the appropriate value of 3, the model of $2 described the 
experimental results satisfactorily. 

What is most surprising about the experimental parameter values is that d is 
many orders of magnitude smaller than 9. On the basis of the predictions of $7, we 
would therefore anticipate that film rupture would be an extremely rare event ; not 
only would the relatively large surface tension always stabilize a rupture instability, 
but the very large gravitational force would always prevent any disturbance from 
growing. Nevertheless, this is not the case, as rupture was commonly observed by 
GG2. Its occurrence was strongly related to the initial conditions used in the 
experiments, however: if a droplet of surfactant was deposited manually on the 
undisturbed film, rueture would occur provided the film was sufficiently thin (e.g. it 
was observed when H = 0.4 mm) ; if spreading was initiated by lifting a barrier that 
surrounded a carefully determined quantity of surfactant already on the surface of 
the film, then rupture could be avoided. It is worth noting that in the former case a 
very large amount of surfactant (a 30 pl droplet) was used, only a small portion of 
which could be expected to form a monolayer. The failure to predict rupture for these 
parameter values is probably due to two related factors : the inadequacy of the initial 
condition used in the numerical simulations to represent the collision of a bulk 
droplet and the film ; and the inaccuracy of the model in the early stages of spreading. 
The importance of the unsteady interaction of droplet and film is supported by 

?Note added in proof: Recent computations (by F. F. Espinosa, R. D. Kamm, personal 
communication) in which terms describing the dependency of capillary effects on local surfactant 
concentration were retained (so that the capillary term in (2.15a) is 45L{h3[(.4”+e2v) &(hz)]z} for 
example) have exhibited additional capillary waves where the film is thinnest. 

10 FLM 240 
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reports of rupture by Fraaije & Cazabat (1989), who dropped oil onto water to  
measure its spreading rate (there were no Marangoni effects in this experiment). 
Clearly further studies, both theoretical and experimental, are necessary in order to  
establish the conditions that will result in rupture. 

With much thinner liquid films in lung airways and alveoli, gravity becomes 
insignificant and diffusion more important. 9 remains sufficiently small for the 
similarity spreading rates of $3  to be potentially useful, however, in describing the 
behaviour either of an aerosol droplet landing on an alveolar wall, or of a planar front 
advancing along an airway. (In both cases the influence of the curvature of the 
underlying wall is small, and does not affect the overall spreading rates (Espinosa 
1991).) If the liquid lining of an alveolus is as thin as 1 pm, for example, so that 
9 = 0(10-4) according to the parameter values given above, a period of 0(105 s) is 
predicted to elapse before diffusion controls the spreading rate of a droplet; the 
dimensional droplet radius over this period is predicted by (3.11 b)  to be 

(t ($)*M* ; *)t 
where M* is the dimensional equivalent of (3.1 b ) ,  (dr/dT)* the dimensional 
‘activity’ of the surfactant a t  very weak concentrations and t* the dimensional time. 
Natural lung surfactant can be expected to  be present in the undisturbed lung liquid, 
however, and it is only if the concentration of this surfactant is sufficiently small 
(r, + 1) that (8.1) is valid (Appendix A); furthermore, since one can expect r, to  
exceed 9, it will be the disappearance of the surfactant gradient, rather than diffusion, 
that halts the spreading. Obviously many other effects will be important during the 
spreading process, particularly those related to the stability and solubility of the 
surfactant monolayer. In  discussing a planar front we have so far assumed that 
surfactant is supplied to it a t  a rate of t t :  we cannot be certain that this is the 
appropriate condition for a front spreading along an airway. An important but still 
undetermined issue, relevant both to droplet and frontal spreading, is the rate at 
which surfactant is supplied to a monolayer from an attached bulk surfactant droplet 
a t  the critical micelle concentration. 

In  the thin liquid layers of the lung, the size of van der Waals interactions is 
considerably greater than in experiment, so that d and Y are much closer in 
magnitude. There are no stabilizing gravitational forces, and diffusive effects are 
weak. Large film deformations can therefore be anticipated, and although the results 
of $ 7  do not predict that rupture instabilities should be likely with d two orders of 
magnitude smaller that 9, the experimental evidence of GG2 suggests that initial 
aerosol droplet-film interactions may very well induce film rupture. The con- 
sequences of rupture are potentially severe, since spreading of much of the droplet 
is halted, hindering effective therapy and possibly leaving patches of epithelium 
denuded. Factors making rupture less likely are therefore of therapeutic importance 
and include, for example, an increase in the surface diffusivity, or a reduction in the 
initial surfactant gradients, e.g. by a decrease in the concentration of surfactant in 
aerosol droplets, particularly when surfactant concentrations in the substrate are 
low. 

This work was supported by NIH grants K04-HL01818, R01-HL41126 and NSF 
grant CTS-9013083. 
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Appendix A. Surface contamination of the undisturbed film 
The two mutually dependent features sustaining the shock a t  the leading edge of 

a spreading surfactant monolayer are (i) that  there is no surfactant on the 
undisturbed film ahead of the shock and (ii) that  there is no transport of surfactant 
into the region ahead of the shock, implying that the surface velocity just behind the 
shock equals the shock speed. The balance between these two conditions is destroyed 
if there is surfactant on the film ahead of the shock (as is almost guaranteed to be the 
case in the lung, for example), and if it is assumed that the surfactant distribution 
is everywhere continuous, the shock solutions of $3 do not exist. Nevertheless, we can 
take advantage of the existing shock solutions by considering the effect of a very 
weak, uniform concentration of surfactant (r, < 1) on the undisturbed film. Only 
the structure of the shock will be altered, while the outer solution behind it,  and thus 
the shock speed, will remain unaffected. (It is worth noting that as a result the 
presence of very weak contamination will not influence the rupture instability 
described in $7.2.) 

The inner solution in the frame of the shock is scaled by (5.1). We are interested 
ip the situation in which T(x,1) = r, ahead of the shock, i.e. Xt-(a+b)G+rm as 
c+ co. Thus the lengthscale over which the shock adjusts to  this downstream 
condition is X, = r, ta+b. X, grows at the same rate asX, and X, (see (5.3)), and will 
therefore be the dominant mechanism by which the shock is smoothed if r, P 59 and 
r, $ 99. Let us suppose that this is the case. Then, letting 5 = cats as before, and 
ignoring capillary effects (which will be important only a t  sufficiently early times), 
(5.2) becomes 

The corresponding boundary conditions resemble (5 .6) ,  except that  G+ 1 as c+ co. 
The appropriate solution of (A 1) is 

(A 1) Ht+&(H2Gt)c = 0,  Gt+ (HGGt)t = 0. 

H = -  2G log - 2G = 5, 
G+ 1 ’  G- 1 

Apart from the difference in the downstream boundary condition the shock structure 
resembles that shown in figure 5, with exponential decay downstream and algebraic 
decay upstream. 

The lifetime of the shock in the presence of existing surfactant on the film is in 
general finite. For a strip or a drop, for example, the surfactant concentration in the 
advancing monolayer decreases as tPb. Clearly once this falls to 0(rm), the gradient 
driving the flow will no longer exist and the spreading will cease. This occurs after 
a time l-,Ifb, which corresponds to the time a t  which x, - X,. Since b = 0 in the 
planar front case, however, spreading will persist indefinitely with the shock 
structure given by (A 2). 

Appendix B. Additional singular effects 
To complete the discussion of shock asymptotics we consider three additional 

effects that have so far been neglected from our model because they arose at 0 ( c 2 )  in 
the original formulation of the problem ($2;  BG; GG1). Although they are 
unimportant throughout the majority of the flow, they have the potential to play 
significant roles in determining the structure of the shock because they act as 
singular perturbations. Our aim is primarily to determine the regions of parameter 
space, and the corresponding timescales, for which these effects may be important, 
and to indicate how they affect the shape of the shock. 

10-2 
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B .  1 .  Surface viscosity 
If we assume that the boundary between substrate and gas, with or without a 
monolayer present, has the rheological properties of a Newtonian interface (Scriven 
1960), the tangential stress condition a t  x = h (2.11) should be written 

u, = cr,+€23,(X(u,)x). 

X is a non-dimensional surface dilational viscosity, given by X = k / p f i ,  where k is 
typically of the order 10-3-10-' g cm/s for most liquids (BG). X will be 0(1) or 
greater in sufficiently thin films, typically those for which fi < 1 mm. Since surface 
viscosity will be significant only in the vicinity of the shock, where the variation in 
r is small, we are justified here in regarding X as independent of surfactant 
concentration, and thus of x, in (B 1).  

For simplicity we neglect diffusive, capillary and gravitational effects, and again 
consider a linear equation of state. The horizontal velocity field (2.14) then becomes 
u(x, z,  t )  = f(x, t ) z ,  where from (B 1 )  

and the governing equations (2 .15)  become 

h , + p X ( f h 2 )  = 0, r,+3,(r-h) = 0. (B 3) 
Away from the shock, f = -r, and (B 3) reduces to (3.3). Moving to  the frar;ne of the 
shock using the scalings of (5 .1) ,  assuming in addition that f(x, t )  = F(C, T ) / P b ,  
(B 2 )  transforms to 

indicating that the lengthscale over which surface viscosity balances bulk viscosity 
and Marangoni forces is independent of time and is given by X, = e Z f .  Setting 
X = X,, expanding (B 3) in the frame of the shock and rescaling F and G by a factor 
a& gives 

H ( l  - p H )  = 1 ,  G( l  - F H )  = 0 ,  F = -Gi+ (FH)fe  (B 5 )  
(B 5) has solutions H = 2 ,  
(1 - ( 1  -2F)+) /F,  G = 0 and 

(B 6) 
(B 6) has no exact solution, but since 0 < F < $ a good approximation is obtained 
simply by considering a Taylor series expansion about F = 0. This gives 
F = Fit+ O(F2),  so F and H decrease approximately exponentially in 5 > 0 (F falls 
from to 0, H from 2 to 1) .  We see then that by opposing stretching of the interface, 
surface viscosity influences the film shape over a lengthscale O(X,) ,  but has no effect 
on the surfactant distribution a t  the shock. 

X, decreases with respect to the length of the monolayer as time increases, and 
will therefore be of diminishing importance. In  thin films (e.g. I? < 1 mm) in which 
X is O(1) or larger, gravitational effects will be negligible, so it will be either diffusion 
or capillarity that swamp the effects of surface viscosity. Since the capillary 
lengthscale X, is generally larger at early times, this is the most likely to  first exceed 
X,. With urn/& = O ( l ) ,  as is often the case, Y = O(e2), so that X, < X, for 
T < (eXi)l/(a+b). However, since 9 increases as I? falls, diffusion may be the 
first to dominate ; X, < X, for T < (~Xf/9) ' / (~+~).  Thus i t  is only if 

G = -$ 2 3  F = $ in t <  0 and, for t>  0, H = 

F = - (( 1 - 2F);)ie 

x B max (€4, ( 9 / e ) 2 )  (B 7)  
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that a significant period can exist in which the effects of surface viscosity will be 
evident. 

B.2. Stretching of the interface 
One term that was neglected from the surfactant conservation relation (2.12) is that  
describing how r is affected by stretching of the air-liquid interface (Scriven 1960; 
Stone 1989). Restoring this term, (2.12) becomes 

(B 8) r, +B,(u, r )  + e2B,(h,) T ( w  - h, u)  = 9Bz(rx). 
- 
a,(h,) is the leading-order approximation to the curvature of the interface, and 
w-h,u approximates the velocity normal to the interface. As before, this effect is 
negligible throughout most of the flow, and the outer (similarity) solutions of $3 are 
unaffected by it, but i t  is a singular perturbation a t  the shock, so we should establish 
its importance. 

Again, we choose to neglect the effects of diffusion, capillarity and gravity, so that 
the velocity fields are given by u = c, z and w = -&r,, z2.  Moving to the frame of the 
shock using (5.1), (B 8) becomes, to leading order, 

Thus the lengthscale over which this stretching term acts is of size 

XStretch = (e2Tafb 1 .  (B 10) 

Setting X = x,t,.,t,h(a&)' and 5 = a&C, (B 9) may be integrated once, and with the 
rescaled H-evolution equation, H(l +iHGI) = 1 (from (5 .7a) ) ,  one obtains 

BG(2-H) -2(H-1) 
HI=-( 1, G I =  H 2  * 

Examination of the (H,G)-phase space shows that there is a unique trajectory 
governed by (B 11) that satisfies (5.6b) and intersects the fixed point ( 1 , O ) .  The 
solution corresponding to this trajectory roughly resembles that shown in figure 5.  
For 5 > 0, H = 1 and G = 0; as g + O - ,  i.e. as the trajectory approaches the fixed 
point, H - 1 -ic and G - &C4. The stretching term therefore smoothes both the film 
height and the surfactant distribution, although it does not extend the length of the 
monolayer. The shock discontinuities arise in Hccc and G,. 

Xstretch, the lengthscale over which this term is effective, grows a t  exactly the same 
rate as the capillary lengthscalex, ((5.3), B 11). Since Y = O(e2) in general, its effect 
will be coupled with capillarity, modifying the solution in 55.3. If Y is o(e2), however, 
this term will be dominant a t  early times, before either diffusion or gravity control 
the flow at the shock. 

B.3. Inertia 
Very large spatial velocity gradients exist at the shock, making it likely that inertia 
influences the flow there. To investigate this possibility, we restore the inertial terms 
to  the momentum equations (2.5), (2.6) : 

e2Re(u,+uu,+wu,) = -px+u,,+O(e2), (B 12a) 

e4Re(w, +uw, + ww,) = -p , -% + O(e2). (B 12b)  

I n  order to re-express (B 12) using the scalings (5.1), ignoring for the moment any 
capillary, gravitational or diffusive effects, it is convenient to introduce a stream 
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function y i (x , z ) ,  which we write as yi = ! P ( c , ~ ) / t " ' ~  to be consistent with (5.1). The 
sizes of the inertial terms in (B 12a) can then be compared to  the O(1) viscous term 
u,, the dominant inertial contribution comes from the convective terms uu, + wuz, 
which are O(c2Re/Xta'b). The inertial lengthscale is therefore 

2Re 
X R ,  = ta+b 

As the shock advances it slows, and so inertial effects diminish in importance, a t  a 
rate greater than any others so far considered. Thus even with Re = 0(1), inertia will 
be significant only extremely early in the spreading process, during times in which 
both lubrication theory, and this asymptotic approximation, are unlikely to be valid. 
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